Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 1012359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465560

RESUMO

A balanced diet is critical for human health, and edible plants play an important role in providing essential micronutrients as well as specific microRNAs (miRNAs) that can regulate human gene expression. Here we present the effects of Moringa oleifera (MO) miRNAs (mol-miRs) on lipid metabolism. Through in silico studies we identified the potential genes involved in lipid metabolism targeted by mol-miRs. To this end, we tested the efficacy of an aqueous extract of MO seeds (MOES), as suggested in traditional African ethnomedicine, or its purified miRNAs. The biological properties of MO preparations were investigated using a human derived hepatoma cell line (HepG2) as a model. MOES treatment decreased intracellular lipid accumulation and induced apoptosis in HepG2. In the same cell line, transfection with mol-miRs showed similar effects to MOES. Moreover, the effect of the mol-miR pool was investigated in a pre-obese mouse model, in which treatment with mol-miRs was able to prevent dysregulation of lipid metabolism.

2.
Front Microbiol ; 13: 888414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756065

RESUMO

In recent years, the clinical use of extracellular miRNAs as potential biomarkers of disease has increasingly emerged as a new and powerful tool. Serum, urine, saliva and stool contain miRNAs that can exert regulatory effects not only in surrounding epithelial cells but can also modulate bacterial gene expression, thus acting as a "master regulator" of many biological processes. We think that in order to have a holistic picture of the health status of an individual, we have to consider comprehensively many "omics" data, such as miRNAs profiling form different parts of the body and their interactions with cells and bacteria. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) algorithms coupled to other multiomics data (i.e., big data) could help researchers to classify better the patient's molecular characteristics and drive clinicians to identify personalized therapeutic strategies. Here, we highlight how the integration of "multiomic" data (i.e., miRNAs profiling and microbiota signature) with other omics (i.e., metabolomics, exposomics) analyzed by AI algorithms could improve the diagnostic and prognostic potential of specific biomarkers of disease.

3.
Foods ; 11(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626950

RESUMO

Celiac disease (CD) is a multifactorial autoimmune enteropathy with a prevalence greater than 1% in the pediatric population. The only therapy for CD patients is a strict gluten-free diet (GFD). Gluten-free food contamination by other cereals during packaging and cooking or accidental ingestion of gluten may cause several intestinal and extraintestinal symptoms in CD patients. Therefore, the monitoring of gluten contamination in food and assessing the level of ingested gluten by analytical biomarkers has been of great interest in recent years. To this aim, small gluten immunogenic peptides (GIPs) obtained by the hydrolysis of gluten and present in urine and feces have been studied as biomarkers of gluten intake and to monitor adherence to GFD by CD patients. More recently, the use of circulating, fecal and urinary miRNAs has emerged as a novel diagnostic tool that can be potentially applied to assess adherence to GFD. Moreover, the presence of GIPs and miRNAs in both feces and urine suggests a similar excretion modality and the possibility of using urinary miRNAs, similarly to GIPs, as potential biomarkers of GFD in CD patients.

4.
Front Nutr ; 8: 778998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901124

RESUMO

It is widely acknowledged that mammalian exosomes (or extracellular vesicles), have a key role in intercellular communication, owing to the presence of various bioactive molecules such as lipids, proteins, and microRNAs within their inner compartment. Most recently, the discovery of extracellular vesicles isolated from edible plants (such as vegetables and fruits) and their similarity in terms of size and content with exosomes has opened new perspectives on possible intercellular communication and regulation of important biological processes in which these vesicles are involved. It is also well-known that a balanced diet rich of fruits and vegetables (i.e., the Mediterranean diet) can contribute to maintain a "healthy gut" by preserving the intestinal epithelial barrier integrity and avoid that inflammatory stimuli that can alter homeostasis. In our study, we optimized a method to isolate extracellular vesicles from the orange juice (Citrus sinensis) (CS-EVs), and we characterized their morphology and behavior when in contact with the intestinal epithelium. We showed that CS-EVs are stable in a simulated gastrointestinal environment and are absorbed by intestinal cells without toxic effects, as expected. Furthermore, we demonstrated that CS-EVs can alter the gene expression of several genes involved in inflammation (i.e., ICAM1 and HMOX-1) and tight junctions (i.e., OCLN, CLDN1, and MLCK), contributing to limit inflammatory stimuli and restore a functional barrier by increasing the tight junction OCLN protein. Therefore, our study emphasizes the relevant role of fruit-derived extracellular vesicles in modulating important biological processes and maintaining a healthy intestinal epithelium, ultimately promoting human health and well-being.

5.
Epigenomics ; 12(15): 1349-1361, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32875809

RESUMO

After the increasing number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all over the world, researchers and clinicians are struggling to find a vaccine or innovative therapeutic strategies to treat this viral infection. The severe acute respiratory syndrome coronavirus infection that occurred in 2002, Middle East respiratory syndrome (MERS) and other more common infectious diseases such as hepatitis C virus, led to the discovery of many RNA-based drugs. Among them, siRNAs and antisense locked nucleic acids have been demonstrated to have effective antiviral effects both in animal models and humans. Owing to the high genomic homology of SARS-CoV-2 and severe acute respiratory syndrome coronavirus (80-82%) the use of these molecules could be employed successfully also to target this emerging coronavirus. Trying to translate this approach to treat COVID-19, we analyzed the common structural features of viral 5'UTR regions that can be targeted by noncoding RNAs and we also identified miRNAs binding sites suitable for designing RNA-based drugs to be employed successfully against SARS-CoV-2.


Assuntos
Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , RNA não Traduzido/genética , Terapêutica com RNAi/métodos , Regiões 5' não Traduzidas , Animais , COVID-19 , Humanos , Pandemias , RNA não Traduzido/metabolismo
7.
Front Microbiol ; 11: 290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174900

RESUMO

Dynamic Light Scattering (DLS), Small Angle X-ray Scattering (SAXS) and Transmission Electron Microscopy (TEM) are physical techniques widely employed to characterize the morphology and the structure of vesicles such as liposomes or human extracellular vesicles (exosomes). Bacterial extracellular vesicles are similar in size to human exosomes, although their function and membrane properties have not been elucidated in such detail as in the case of exosomes. Here, we applied the above cited techniques, in synergy with the thermotropic characterization of the vesicles lipid membrane using a turbidimetric technique to the study of vesicles produced by Gram-negative bacteria (Outer Membrane Vesicles, OMVs) grown at different temperatures. This study demonstrated that our combined approach is useful to discriminate vesicles of different origin or coming from bacteria cultured under different experimental conditions. We envisage that in a near future the techniques employed in our work will be further implemented to discriminate complex mixtures of bacterial vesicles, thus showing great promises for biomedical or diagnostic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...